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Short-range Ising spin glass: Multifractal properties
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The multifractal properties of the Edwards-Anderson order parameter of the short-range Ising spin-glass
model ond=3 diamond hierarchical lattices are studied via an exact recursion procedure. The profiles of the
local order parameter are calculated and analyzed within a range of temperatures close to the critical point with
four symmetric distributions of the coupling constat®aussian, bimodal, uniform, and exponentiélnlike
the pure case, the multifractal analysis of these profiles reveals that a large spectrura ¢fdluier exponent
is required to describe the singularities of the measure defined by the normalized local order parameter, at and
below the critical point. Minor changes in these spectra are observed for distinct initial distributions of
coupling constants, suggestinguaiversalspectra behavior. For temperatures slightly abdye a dramatic
change in thé=(a) function is found, signaling the transitiof§1063-651X97)10603-1

PACS numbeps): 05.50+q, 75.10.Nr, 64.60.Ak

I. INTRODUCTION of the system, e.g., the correlation length, the sensibility to
the boundary conditions, and finite-size effects, should
The understanding of the nature of the spin-gléS§) present a behavior that is very distinct from those of infinite-
condensed phase in real systems has been challenging maiaynge models. For the SG model on the pathological Bethe
authors[1] since the scenario emerging from Parisi’s mean-attice with finite connectivity, the controversy about the na-
field solution [2] of the Sherrington-KirkpatrickSK) [3]  ture of the condensed phase still persists. For instance, it was
model came out. Some raised conclusions, such as the struound that a replica-symmetric solution is stable for zero
ture of the free-energy barriers corresponding to many disfield whenopen(uncorrelatedboundary conditions are con-
tinct phases below, (pure statesarranged in an ultrametric sidered[9], while the breaking of replica symmetry is re-
structure]4], and the existence of a critical ordering field for quired to obtain a stable solution beldw whenclosed(cor-
the condensed phafg|, generated controversies that remainrelated boundary conditions are imposed on the sysf&6).
unsatisfactorily elucidated. In particular, the domain-wall Another line of approach in the study of short-range SG be-
phenomenological scaling approadHbroplet modéel dis-  havior was developed after the work of Southern and Young
misses the SK model as appropriated for the description dfl1], who succeeded in obtaining, by using the Migdal-
short-range Ising spin glasses in low dimensions and doelkadanoff renormalization-grougMKRG) scheme, phase
not share the same conclusiof&7]. On the other hand, diagrams showing the presence of a SG phase in three di-
recent works based on numerical simulations presented renensions = 3), but not ford= 2, indicating that the lower
sults indicating that short-range models should exhibit theeritical dimensiond, should lie in this interval. This latter
same qualitative features appearing in the SK m@8lelitis  approach, which can be viewed as an approximation for real
worth mentioning that much effort has been devoted to theystems, was applied to investigate the exponents required to
investigation of exactly solvable short-range SG models aslescribe the transition to the condensed phase. On the other
an attempt to describe real spin glasses, where certain aspebtnd, based on the scaling theory, it was found that a SG
obeying symmetric distributions is characterized by four in-
dependent exponents: the thermal and ¢heotic ones at
*Present address: International Centre for Condensed Mattéf=0 andT=T_ [12]. Within this approach thehaosexpo-
Physics, Universidade de Brha) Caixa Postal 04513, 70919-970 nents govern the sign changing of the effective coupling of
Braslia, Distrito Federal, Brazil. two spins, a distanck apart, with the temperature. The in-
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terpretation for this phenomenon of critical chaos was done ! o
in the framework of thedroplet theory[13].
Another point of view of the MKRG was explored since O

it was proved that its renormalization-group equations are
exact for the Ising model on a family of diamond hierarchi-
cal lattices(DHLs) [14]. The study of spin systems on such
exotic lattices, whose coordination number varies from 2 to
o, acquires relevance because exact solutions can be ob-
tained and are well controlled. Morgado, Coutinho, and
Curado[15] presented an exact recursion procedure to cal-
culate the local magnetization at each site of the pure ferro-
magnetic Ising model on a two-connection DHL. They ob-
served the multifractal structure of the local thermal average
magnetizatiorat the critical point[15]. This highly inhomo- Q
geneous structure having zero mean in the thermodynamic
limit is induced by the topology of the underlying lattice. s »
Moreover, they also showed that an infinite set@éxpo-
nents is required to describe for the critical behavior of the FIG. 1. General diamond hierarchical lattice basic unit, vith
local magnetizatiofi15]. This work was further generalized Parallel paths, each one composed of two bonds and one internal
for a p-connection DHL withq intermediate sites within ~Sité (scaling factor 2).
each connection[16]. The Morgado-Coutinho-Curado
(MCC) method was also applied to investigate the multifrac-the F(a) spectrum around’.. In Sec. Il the model Hamil-
tal and critical properties of thg-state ferromagnetic Potts tonian is presented and the corresponding critical tempera-
model on thep-connection DHL[17]. tures associated with each distribution are obtained. In Sec.
In the present paper we intend to contribute to the underl!l we give full details of the generalization of the MCC
standing of the nature of the SG condensed phase. An af2€thod for the SG case, as well as about the numerical pro-
ceptable description of the structure of this phase is not yetedure used to obtain the EA order parameter profiles for the
well established. Since disorder and frustration are the reffour distinct initial distributions of couplings. In Sec. IV the
evant ingredients for the SG physical behavib], a rather ~Multifractal properties of the EA order parameter are ob-
unusual structure should be expected for the local order pdained and the correspondirig(a) functions calculated by
rameter characteristic of the |0W_temperature phase_ MondlSUnCt initial distributions are Compared. Furthermore, we
vated by this, we generalized the MCC method to investigat@vestigate the temperature behavior of the boundaries of the
the structure of the local Edwards-AnderdﬁA) order pa- F(a) functions, above and below the critical pOint, corre-
rameter of the Ising SG model on generalized diamond hiersponding to each distribution. Finally, the conclusions are
archical lattices at temperatures below the critical point. Théummarized in Sec. V.
distribution of the measure defined by the normalized local
EA order parameter along the lattice will be analyzed using II. HAMILTONIAN AND MIGDAL-KADANOFF
the multifractal method This method is appropriated to de- RENORMALIZATION-GROUP PROCEDURE
scribe self-similar local quantities that can be interpreted as ] ] )
measures. The multifractal analysis was mostly developed to L€t us consider the nearest-neighbor short-range Ising
describe a broad class of objects generated by physical préPin-glass model on a genegaiconnection diamond hierar-
cesses and characterized by normalized stationary distripghical lattice. The hierarchical lattices are connected graphs,
tions (measuresassigned upon fractals sdtsg]. Thevolt-  recursively constructed by replacing all bonds at each gen-
age distribution associated with random resistor networks ration by a basic unit, the starting point being the basic unit
the growth probabilityof aggregation processes, and tree itself (first generatloin The DHL basic un!t |s.de3|gned by
locity differenceinside eddies in the case of fully developed tWO root sites coupled through connectionsin parallel,
turbulence are examples of nontrivial distributions where dif-ach of them composed by two bonidsseriesvia one in-
ferent fractals subsets give the dominating contribution tdernal site(scaling factor 2 as schematically shown in Fig.
different moments of the distributiof.9]. Nowadays it is 1. Thegraph fractal dimensionsf such lattices are given by
being used also to study observables at the criticality, such &&= 1+Inp/in2. o
the conductance in the localization-delocalization transitions 1he Hamiltonian of the present model is given by
[20] and the local magnetization of pure spins mod&s—
17]. The scaling properties of the EA measure will be con- Cay— N
sidered by calculating the correspondiffx) spectrum as a AH <izi> Kn(l.))oio;, @)
function of the temperature. Now we extend the preliminary
results obtained by Coutinhcet al. [21], where theF(«) where Ky(i,j)=—8Ju(i,j) is the reduced exchange cou-
spectra of the SG Ising model with an initial Gaussian disling constant between nearest-neighbor spins of a
tribution was studied for lattices up to 12 generations. WeN-generation DHL, Jy(i,j) being the Nth-step Migdal-
consider four distinct initial distributions of couplingsimo- ~ Kadanoff renormalized coupling constant obtained from the
dal, Gaussian, uniform, and exponen}jakith lattices up to  original distribution. It is worth mentioning that the real-
16 generations, investigating the temperature dependence gfface Migdal-Kadanoff renormalization-group transforma-
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tion ond-dimensional Bravais lattices is known to be equiva-

lent to the exact solution on the DHL withdcagraph fractal
dimension [14]. The MKRG transformation of a
p-connection DHL with general nonuniform coupling con-
stants yields an effective coupling given Hy1]

p

21 In[

coshK (o, u)+K(a,u")]
cosiK(oy,u)—K(oy,u')]

1
KR =5

)

. . . . . 23
which can be rewritten in terms of more convenient varlableé ]

as

p

|=21 tanh Lty uty.0) |, 3

t,u.,/,L’ :tan}‘{

wheret, ,=tanlK, is called thermal transmissivity. In Eq.
(2) oy labels the spin variables of the internal sites of a
basic unit, whilew andu’ denote the root variabldsee Fig.
1).

The critical temperature for the spin-glass model can be

numerically obtained from either Eq&) or (3) by monitor-
ing the width of the iterated distributidi 1]. For the case of
Eq. (3), in the zeroth step a pool dfl random initial trans-
missivities {t;} =tanh{8{J}); i=1,2,...,M) is generated,
with the coupling constants);} following a given probabil-
ity distribution. In the first step Ed3) is iteratedM times by
choosing at random (2 initial transmissivities; the new
M -valued pool represents the renormalized thermal transmi
sivity distribution. This process may be repeated and reno

malized distributions can be numerically followed by com-

puting its moments at each stgfl]; a flow diagram may be
constructed, e.g., in the transmissivitgrsusvariance plane
[22]. Since the spin-glasfixed-point distributioris not ana-
lytically known, we considered four initial symmetric distri-
butions of interest, namely, the Gaussian, bimodal, expone
tial, and uniform ones, defined, respectively, by

1 1,
P(‘]i’j):\/T_ﬂ-eX _E‘]i’j s (48)
1
P(Ji,j):5[5(Ji,j_1)+5(\]i,j+l)]r (4b)
1
P(Ji,p:Eexq—ﬁuub, (49
and
1
— if —3=<J, <3
P(J)=1{ 23 a=R gy
0 otherwise.
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TABLE I. Spin-glass pseudocritical temperatures for different

probability  distributions  within  the Migdal-Kadanoff
renormalization-group procedure, @+ 3 spin glass.
Reference Gaussian Bimodal  Exponential  Uniform
this work 0.88 1.15 0.75 0.96
[11] 0.88+0.02 1.05:-0.02 1.00-0.02
[22] 0.85 1.2 0.7 1.0
[12] 0.89

0.83 1.15 0.71 0.94

spin-glass(paramagneticfixed point characterized by infi-
nite (zerg variance and zero mean. In Table |, we present
our numerical estimates for these pseudocritical temperatures
obtained from the initial distributions given by Edd) in the
cased=3(p=4), compared with other values reported in
the literature.

Ill. LOCAL MAGNETIZATION
AND LOCAL EA ORDER PARAMETER

A. Generalized method for spin glasses

The aim of this method is to establish a recursion relation
between the value of the local magnetization of the internal
site belonging to a connection of a given basic unit of the
DHL with the local magnetization of its root sites. If this is
achieved, one can consider a finite DHL withgenerations
with Ising spin variables, described by the Hamiltonian given
in Eq. (1), with nearest-neighbor random exchange coupling
constants chosen from a given initial distribution, and renor-
malize itN—1 times, storing at each step all renormalized
coupling constants. Then, taking arbitrarily initial magneti-
zations (corresponding to the spin-glass boundary condi-

fions) for the root sites of the first generation, we can suc-

cessively calculate the local magnetizations of each site of
theN-generation DHL, at a given temperature and for a cho-
sen initial coupling-constant distribution.

To obtain this recursion relation, let us consider an
N-generation DHL and look at an arbitrary basic unit intro-
duced at theNth generation as shown in Fig. 2. This basic
unit is connected to the lattice by its root siteg,fu').
Therefore, the partition function of the whole lattice can be
written as

Z=Tr({gi}%”,)exr{ — BH I]
=Troppn)@H—BH{ o} p, )]

xexp{— B(hputh,m' +K up)t,  (5)

where{o;}, i=1,2,...,p, denote the internal spins within
each connectiony, ' are the root spins of the basic unit;

andh,,h,,, andK’ are, respectively, the effective fields and
the effective coupling acting upon the basic unit root spins

A pseudocritical temperature is associated with each initiajyqyced by the rest of the latticl({o}, 1, ") is the inter-

distribution, for which the flow will converge to the critical
point characterized by the “fixed-point” distribution, which
is numerically known[24]. For temperatures very close to
but below (above this pseudocritical temperature the flow

will at first approach the fixed point and then turn to the

nal Hamiltonian of the basic unit given by

p
H({oi},u,m=i§1 (Kip+K{ "o, (6)
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Uh, where t=tanhK’), t;=tanhK;) (i=1,2), andr,=tanhf,)

" for a=w,u’. Now, from Egs.(8) and(9) we can write the
unknown variables t( 7,, and 7,,) as a function of
h (m), (u'"), andZ and substitute them in E410) to end up
with the recursive equation

ty(1—t5) to(1—t3)

+ ).
1- 08 () 1- 00 (m') (11

(0)=

K/

We emphasize that if the sites of a hierarchical lattice are
properly addressed, E(l1) establishes a recursive equation
between the local magnetization of the sites belonging to the
last generation and the ones of previous generations. More-
over, its coefficients depend not on the unknown fields and

/ couplings, but only upon the coupling constants belonging to
the chosen connection. This result is the main achievement
1 hy of this method.

FIG. 2. Schematic representation of the equivalent system con- B. Numerical procedure

structed by retaining a given basic unit of the final generation, with T gnalyze the structure of the local EA order parameter

coupling constant&; (i=1,...,2). u,u’ are the root spins of  of oyr model, we should calculater;)? for all sites and
the basic unith,, ,h,,, andK" are, respectively, the effective fields average them over many samples, yielding
and the effective coupling generated by the whole lattice. '
EA
a7 "=[(oi)%1e, (12

whereK; K, are the corresponding random coupling con-
stants between the;'s and theu, u’ spins, respectively.  where[ ], stands for the configurational average taken over
The local magnetizations of all sites within a given basicmany independent initial distributions of couplings. To con-
unit can be easily evaluated for the effective model definedider larger lattices we have to go further in the renormaliza-
by the HamiltonianH’ by tracing over all spins variables. tion steps. Since the number of sites and bonds increases like
However, since our main concern is to establish a recursiofi2p)", the amount of computer memory required to store the
relation between the internal-site magnetization and these ahagnetizations and the coupling constants during the inter-
the roots sites of a certain basic unit, the procedure can bmediate steps will increase with such a rate. In order to maxi-
further simplified by focusing our attention on a single con-mize the number of renormalization steps, we look at the
nection and including the effects of the other connectiongnagnetization structure of a subset of representative sites of
onto the effective fields and coupling, following the ideas ofthe lattice. These sites are thé' 2nes belonging to any
the decoration transformation formalisig5]. In this case, shortest path connecting the roots sites. The magnetization
our system is overreduced to a single connection with arfand/or the EA local order paramekstructure of this subset
internal site under the action of the effective fields and ef-can be viewed as a representatprefile of the whole lattice.
fective coupling induced by the remaining lattice, as scheSince they are stochastically equivalent, we argue that by
matically shown in Fig. 2. For this overreduced system, theaveraging over many profiles, we should obtain the correct

Hamiltonian in defined by scenario for the local EA order parameter of the considered
model.
H'(o,p,u")=(Kyp+Kop Yot+h,pu+hyp'+K up'. To calculate the profile of the local magnetization of an

@) N-generation hierarchical lattice we make use of @4). To
display the profile, we have to label the sites of a given path,
assigning the values of its local magnetizations of the sup-
port set, due to the graph topological nature of the hierarchi-
(uy=Z" Tr{ wexp(— BH")] cal lattices. To proceed, we choose the set of site labels by
(s,]) belonging to the interval [0,1], defined by
sx27! s=1,35,...,(2—-1), andl labeling the genera-

The magnetizations at each site are straightforwardly calc
lated, giving

_ (TM+tTMr)+t1t2(T,ur+tT’u)

- 1+tr, 7+t (t+7,7,0) " ® tion (1I=1,2,...,N). For this choice the recursive equation
can be written as
(w')=Z"*Tr p'exp(— BH")] (e A 1 () Ae 1 () .
g = e A
B (T +tr,) +tato(r,+t7,)) 9 sl syl VM7 syly sl VB s
Lt tr, Tttt T, © where s;=3(s*1), I,=1-1, 5;=3(s¥1), and l;=1-],
with j=2,3,. .. ,|I. The coefficients of Eq(13) are given by
(o)=Z"Tr{ o exp— BH")]
ty(7 +tr, ) +Hto(r, +t7,) ts’sl(l_tg'sj)
A" o 2\ ® (10) Asly|1:—2_2_t ) (146)

1- ts,sl S,S;

B 1+t7‘MTM/+t1t2(t+ TMTM/) ’ !



3938 E. NOGUEIRAEet al. 55

@ @

EA EA

9 0.5

(b) ®)

EA : : EA

N ~axao* 0% 5x10° N 4.0x10°
Position Position

FIG. 3. Portion of the profile of local EA order parameter for  FIG. 4. Portion of the profile of the average local EA order
one sample and a lattice with=16 generations; the sites chosen parameter (200 samplefor a lattice withN=16 generations; the
belong to a subset with positions in the range sites chosen are the same as in Fig. (8 T=T. and (b)
i=3.0x10% ...,4.0<10% selected from the set=1,2,..., N, T=0.9T,.
corresponding to a given shortest path connecting the two roots

sites.(@) T=T, and(b) T=0.9T,. T. (see Table ), as well asT,=0.9T,, T,=0.8T., and
T3=0.7T.. This was done for lattices witi=3 andN=38

ts,sj(l—ti,sl) up to 16 hierarchies. In Fig. 3 we display these profiles for
As =77 (14b  the Gaussian distribution at the temperatur€s and

$i817S:S) T, (N=16) for just one sample, whereas in Fig. 4 the same

: - is done for 200 samples. It is clear from these figures that the
where ts]sj—tanI‘[K|(s,§)], Ki(ss) be!r?g t_h,e coupling con- disordered structurepof the local EA order paragmeter of one
stant between the spins at the positiss: and the one at - sample increases as we go further in the condensed phase.
;2 1. ) . However, when the configurational average is taken, the pro-
To calculate an EA order parameter profile we must firStjje presents uniformities reminiscent of the graph lattice

generate the coupling constants for each level. Due to thgymmetry similar to what happens for the pure mdds.
disordered nature of the profile we make use of an equivalergq, evident from Fig. 4 is the increase OfFA

;tochastip procedure in order to save computer memory aéz—NEiqiEA, the mean value per site, as we decrease the
intermediate steps of the calculation. For a fixed value of th?emperature For all other distributions listed abdlno-
temperature we create an initial distribution for the thermaldal exponeﬁtial and uniformthe same qualitative behavior
transmissivities, represented by a pooMbfrandom numbers wa,s obsewetﬂzé]

(M=10x2N). At the Nth level we choose randomly, from '

the initial distribution, a set of ® couplings, which are
stored to be used later in the calculation of the site magneti-
zations. At the next leve[(N—1)th level, we obtain a The high degree of discontinuity shown in the profiles
renormalized distributioinew M random numbeps gener-  suggests the multifractal analysis as a tool to investigate the
ated according to the renormalization E8); from this dis-  singularities of the measure constructed from the EA local
tribution, we pick randomly ¥~ couplings, which are also order parameter, following the same approach used for pure
stored. This process is carried fdr- 1 times such that at the models[15,17,18. To obtain the multifractal spectrighe

last level only two couplings are stored. Now we make useF(«) function], we first define a measure by the normalized
of Eq. (13), fixing the initial values for the magnetization of local EA order parameter

the roots(zeroth generation and calculate the local magne-

tization of each level, using for the coupling constants the ea Ui
values previously stored. P (15)

IV. MULTIFRACTAL PROPERTIES

C. EA order parameter profiles

For each of the initial distributions defined in E4), we  and construct a parametrized family of normalized measures
generated profiles at the corresponding critical temperaturdefined by
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FIG. 5. F(a) functions of the local EA order parameter profile
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F(o)

FIG. 6. F(«) functions of the average local EA order parameter
profile (200 samples at and below the critical temperature, for the
(a) Gaussian andb) bimodal distributions of coupling constants
(O, T=T,; O, T,=0.9T,).

whereas more pronounced changes are observed for the ex-
ponential case. In Fig. 6 the correspondifx) functions
averaged over 200 samples are shown for the Gaussian and
bimodal distributions af, and T;=0.9T.. Minor changes
are observed when we compare with Fig. 5.

In Fig. 7 we show in the same plot tg ) functions at
and below T, for the four considered distributions. It is
worth directing the reader’s attention to the universal char-
acter of theF(«) function within small deviations. Here we
remark that, although we have used the renormalized distri-
butions of couplings at each step of the calculation, the in-
fluence of the initial distribution should be relevant since in

with one sample, for decreasing temperatures and different initiathe thermodynamic limit {—cc) half of the sites in the

distributions of coupling constant$a) Gaussian(b) bimodal, (c)

exponential, and(d) uniform (O, T=T.; O, T,;=0.9T;
O, T,=0.8T.; andA, T3z=0.7T,).
(&
pit=————, (16)
2 (g

which is a generalization of the original measu,’li%“, in-
creasing the large site probabilities for positive valueg aé
well as the small ones for negative valuesqfThe F(a)
function is now obtained following the method due to
Chhabra and Jenséf7], where thespectrumis obtained by
varying the parametey and calculating

(-1
F(aq)= lim {Wzi uAInpA 17)
o= lim | —= A EA (18)
q veo | NIN24 Mi i

In Fig. 5 we display the correspondifi «) functions for

the profiles of one sample obtained from the initial distribu-

tions listed in Eq(4), for temperatures at and beld. We

profile belong to generatioN and their magnetizations are
calculated with the coupling constants introduced by the ini-
tial distribution. For the whole lattice this influence should
be even more relevant; in this ca§®f the total number of
sites belong to generatidd.

FIG. 7. Comparison between tk€ «) functions of the local EA
order parameter profiles at and below the critical temperature for
the GaussianQ; bimodal, OI; exponential, ¢ ; and uniform, A

notice light variations of the spectra by changing the teminitial distributions of coupling constantsi@ T=T, and (b)
perature for the Gaussian, bimodal, and uniform casesf,=0.9T,.
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Kadanoff renormalization equation, which is exact in such

4 :Zm“ 0° & cmax o° classes of lattices. The EA order parameter profilésgiges
™ 6 " °° for lattices up toN= 16 hierarchies were calculated by con-
UT) | ooo® 0000 sidering four types of initial distributionéGaussian, bimo-
2r dal, exponential, and uniformand for temperatures around
© ooog moag the critical point. ForT<T, the profiles of the spin-glass
0 . Y90ooa (a) _Oogog (b) condensed phase show a high degree of disorder and singu-
larities increasing for lower temperatures. The multifractal
oa,, ° oa,, ° analysis was applied to these profiles, revealing a large spec-
41 a0y, oc° 8 Oy o° trum of exponents for the singularities of the measure de-
ouT) | o °° fined by the normalized local EA order parameter. For each
o | ©000 oooco considered distribution of couplings, th€ «)function of the
profiles show slight variations with the temperature in the
LT . @ """ Congg @ studied range OT,-T., with larger deviations occurring
0 p & > p e > when the temperature gets closeilta These profiles reveal
T/T, T/T, a high degree of local disorder of the spin-glass condensed

phase, a scenario not observed in the pure E85d6 for
the same classes of lattices. Moreover, small deviations are
FIG. 8. Upper O,ama) and lower (J,am) bounds of the  gpserved when the multifractal spectrum obtained from dis-

F(«) spectrum as a function of the temperature for different d'sm'tinct initial distributions of coupling constants are compared
butions of coupling constantéa) Gaussian(b) bimodal,(c) expo- 4t the same temperature. This suggesisigersalmultifrac-
nential, and(d) uniform. tal behavior of the present model for distinct initial distribu-

tions of couplings, taking into account thatof the total

In order to investigate the behavior of tR€¢«) spectrum  number of sites belong to the last generation, whose local

aroundT ., we plot in Fig. 8 the dependence of its upper andmagnetizations are calculated with the coupling constants in-
lower bounds as a function of the temperature, for all theroduced by the not-yet-renormalizééhitial) distribution.
considered initial distributions. We notice that beldw a  We have also studied the temperature dependence of the
constant value is observed for the upper bouag.{), while  range of the multifractal spectrum close to the critical point.
small deviations occur for the lower bound;,) close to  For T<T, the range of ther Holder exponent remains con-
T.. Nevertheless, for temperatures slightly abovg an  stant. However, when the temperature is higher fhanone
abrupt increase is observed for the upper bound, while abserves an abrupt change in the multifractal spectrum sig-
small decrease occurs for the lower bound, signaling the S@aling the transition. Therefore, theultifractal analysis
transition. At T=T. the magnetization at the majority of shows that a complete characterization of the SG behavior at
sites vanishes, being eliminated from the calculation of theriticality and deep inside the condensed phase demands the
spectrum. Therefore, as we are dealing with a finite latticeknowledge of a broaéinfinite) set of exponents. For the pure
one should expect a finite but highef,,, which is the case, this spectrum was found to be linearly related to a
exponent governing the singularities of the set of smallesgpectrum ofg critical exponents associated with the local
measures still present. This is evidenced by the rapid inmagnetization§15]. In such case, thg critical exponent of
crease ofyy,,, With the temperature, fof >T.. On the other  the average magnetization of the whole lattice corresponds to
hand, thea,,;, exponent that governs the set of higher mea-the subset of measures describeddoyd, d being the di-
sures should remain finite to describe the singularities of thenension of the support. We expect that a similar relation
measures belonging to the sites “close” to the root sitesshould be valid also for the spin-glass case, establishing a
(or surfacesites. Those sites are the ones whose magneticomplete characterization of the critical exponents in terms
zations were calculated with at least one of the values imof the multifractal spectra. This point needs further investi-
posed as initial boundary conditions. The intermediate pointgation.
of the spectra should bspuriouspoints since the present However, contrary to the pure case, where a nontrivial
algorithm[27] used to calculate thE(«) function is based multifractal behavior is observed only at the critical tempera-
on the method of moments and tend to produce a top enveure[15,16), the persistence of the(«) function throughout
lope of the actual spectruf28]. In the thermodynamic limit  the spin-glass phase indicates the highly nontrivial character
(N—o0), we expect to have no spectrum except a ptrf))  of such phase. Although we are not able to associate the
corresponding to the nonvanishing values introduced by theersistence of multifractality with any prediction from the
imposed boundary conditions. available theories to describe short-range spin glasses, the
multifractal analysis evidences the contrast between the
spin-glass and ferromagnetic states and the critical nature of
the spin-glass condensed phase.

We generalized the exact recursion method developed by
Morgadoet al.[15] and applied it to investigate the structure
of singularities of the local Edwards-Anderson order param-
eter of the short-range Ising spin-glass model on diamond This research was supported by the CNPq, FINEP, and
hierarchical lattices. Within this procedure, the distributionCAPES. E. N. is also grateful to FACEPE for the financial
of coupling constants is renormalized by the Migdal-support under Grant No. BFD-0505-1.05/95.

V. CONCLUSION

ACKNOWLEDGMENTS



55 SHORT-RANGE ISING SPIN GLASS: MULTIFRACTAL ... 3941

[1] For reviews, see, for example, K. Binder and A. P. Young,[13] M. J. Thill and H. J. Hilhorst, J. PhysFrance | 6, 67 (1996.
Rev. Mod. Phys.58, 801 (1986; D. Chowdury and A. [14] P. M. Bleher and E. Zalys, Commun. Math. Ph@, 17

Moorkejee, Phys. Refd14, 1 (1984; A. J. Bray, Comments (1979; A. N. Berker and S. Ostlund, J. Phys. 12, 4961
Condens. Matter. Phyd4, 21 (1988; M. Mezard, G. Parisi, (1979.
and M. A. Virasoro,Spin Glass Theory and Beyort&/orld [15] W. A. M. Morgado, S. Coutinho, and E. M. F. Curado, J. Stat.
Scientific, Singapore, 1987K. H. Fischer and J. A. Hertz, Phys.61, 913(1990; Rev. Bras. Fis(Brazil) 21, 247 (1991.
Spin Glasse¢Cambridge University Press, Cambridge, 1991 [16] O. Donato da Silva-Neto, M.Sc. thesis, Universidade Federal
[2] G. Parisi, Phys. Rev. Lettt3, 1754(1979; 50, 1946 (1983; de Pernambuco, 1992npublishegl
M. Mézard, G. Parisi, N. Sourlas, G. Thoulouse, and M. Vira-[17] L. da Silva, E. M. F. Curado, S. Coutinho, and W. A. M.
soro, J. Phys(Parig 45, 843(1984). Morgado, Phys. Rev. B3, 6345(1996.
[3] D. Sherrington and S. Kirkpatrick, Phys. Rev. Le#. 965  [18] T. M. C. Halsey, M. H. Jensen, L. P. Kadanoff, |. Procaccia,
(1975. and B. I. Shraiman, Phys. Rev. 28, 1141(1986.
[4] Vertechi and M. Virasoro, J. Phy&Parig 50, 2325(1989. [19] See, for instance, T. T,eZ. Naturforsh. Teil A43, 1154
[5] J. R. L. de Almeida and D. J. Thouless, J. Phys1h 983 (1988, and references therein.
(1978. [20] M. Janssen, Int. J. Mod. Phys. 8 943 (1994.
[6] A. J. Bray, J. Phys. @5, L57 (1982. [21] S. Coutinho, O. Donato-Neto, J. R. L. de Almeida, E. M. F.
[7] D. S. Fisher and D. A. Huse, Phys. Rev. Léts, 1601(1986); Curado, and W. A. M. Morgado, Physica 85 271 (1992);
Phys. Rev. B39, 373(1988. S. Coutinho, J. R. L. de Almeida, and E. M. F. Curado, in
[8] J. D. Reger, R. N. Bhatt, and A. P. Young, Phys. Rev. 1&t. Fractals in the Natural and Applied Scienceslited by M. M.
1859(1990; A. Georges, M. Meard, and J. S. Yedidiahid. Novak (North-Holland, Amsterdam, 1994p. 81.

64, 2937(1990; E. R. Grannan and R. E. Hetzéjd. 67, 907 [22] E. M. F. Curado and J-L. Meunier, PhysicalA9, 164(1988.
(1992); J. Wang and A. P. Young, J. Phys.28, 1063(1993; [23] L. Bernardi and I. A. Campbell, Phys. Rev.4®, 728(1994).
E. Marinari, G. Parisi, F. Ritort, and J. J. Ruiz-Lorenzo, Phys.[24] E. J. Hartford and S. R. McKay, J. Appl. Phys0, 6068

Rev. Lett.76, 843(1996. (1991).

[9] D. J. Thouless, Phys. Rev. Le6, 1082(1986. [25] See, for example, M. E. Fisher, Phys. R&t3 969 (1959.

[10] P. Mottishaw, Europhys. Let#, 33 (1987; Lai Pik-Yin and  [26] E. Nogueira-Jr., Ph.D. thesis, Universidade Federal de Per-
Y. Y. Goldshmidth, J. Phys. 22, 399(1989. nambuco, 1996unpublisheg

[11] B. W. Southern and A. P. Young, J. Phys1@, 2179(1977). [27] A. Chhabra and R. V. Jensen, Phys. Rev. Lég&, 1327

[12] J. R. Banavar and A. J. Bray, Phys. Rev3B 8888(1987); H. (1989.

J. Hilhorst and M. Nifle, Phys. Rev. Let68, 2992 (1992; [28] D. Veneziano, G. E. Moglen, and R. F. Bras, Phys. ReS2E
Physica A193 48 (1993. 1387(1995.



