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Short-range Ising spin glass: Multifractal properties
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The multifractal properties of the Edwards-Anderson order parameter of the short-range Ising spin-glass
model ond53 diamond hierarchical lattices are studied via an exact recursion procedure. The profiles of the
local order parameter are calculated and analyzed within a range of temperatures close to the critical point with
four symmetric distributions of the coupling constants~Gaussian, bimodal, uniform, and exponential!. Unlike
the pure case, the multifractal analysis of these profiles reveals that a large spectrum of thea Hölder exponent
is required to describe the singularities of the measure defined by the normalized local order parameter, at and
below the critical point. Minor changes in these spectra are observed for distinct initial distributions of
coupling constants, suggesting auniversalspectra behavior. For temperatures slightly aboveTc , a dramatic
change in theF(a) function is found, signaling the transition.@S1063-651X~97!10603-1#

PACS number~s!: 05.50.1q, 75.10.Nr, 64.60.Ak
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I. INTRODUCTION

The understanding of the nature of the spin-glass~SG!
condensed phase in real systems has been challenging
authors@1# since the scenario emerging from Parisi’s mea
field solution @2# of the Sherrington-Kirkpatrick~SK! @3#
model came out. Some raised conclusions, such as the s
ture of the free-energy barriers corresponding to many
tinct phases belowTc ~pure states! arranged in an ultrametric
structure@4#, and the existence of a critical ordering field f
the condensed phase@5#, generated controversies that rema
unsatisfactorily elucidated. In particular, the domain-w
phenomenological scaling approach~droplet model! dis-
misses the SK model as appropriated for the description
short-range Ising spin glasses in low dimensions and d
not share the same conclusions@6,7#. On the other hand
recent works based on numerical simulations presented
sults indicating that short-range models should exhibit
same qualitative features appearing in the SK model@8#. It is
worth mentioning that much effort has been devoted to
investigation of exactly solvable short-range SG models
an attempt to describe real spin glasses, where certain as
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of the system, e.g., the correlation length, the sensibility
the boundary conditions, and finite-size effects, sho
present a behavior that is very distinct from those of infini
range models. For the SG model on the pathological Be
lattice with finite connectivity, the controversy about the n
ture of the condensed phase still persists. For instance, it
found that a replica-symmetric solution is stable for ze
field whenopen~uncorrelated! boundary conditions are con
sidered@9#, while the breaking of replica symmetry is re
quired to obtain a stable solution belowTc whenclosed~cor-
related! boundary conditions are imposed on the system@10#.
Another line of approach in the study of short-range SG
havior was developed after the work of Southern and You
@11#, who succeeded in obtaining, by using the Migd
Kadanoff renormalization-group~MKRG! scheme, phase
diagrams showing the presence of a SG phase in three
mensions (d53), but not ford52, indicating that the lower
critical dimensiondl should lie in this interval. This latter
approach, which can be viewed as an approximation for
systems, was applied to investigate the exponents require
describe the transition to the condensed phase. On the o
hand, based on the scaling theory, it was found that a
obeying symmetric distributions is characterized by four
dependent exponents: the thermal and thechaotic ones at
T50 andT5Tc @12#. Within this approach thechaosexpo-
nents govern the sign changing of the effective coupling
two spins, a distanceL apart, with the temperature. The in

ter
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55 3935SHORT-RANGE ISING SPIN GLASS: MULTIFRACTAL . . .
terpretation for this phenomenon of critical chaos was d
in the framework of thedroplet theory @13#.

Another point of view of the MKRG was explored sinc
it was proved that its renormalization-group equations
exact for the Ising model on a family of diamond hierarc
cal lattices~DHLs! @14#. The study of spin systems on suc
exotic lattices, whose coordination number varies from 2
`, acquires relevance because exact solutions can be
tained and are well controlled. Morgado, Coutinho, a
Curado@15# presented an exact recursion procedure to
culate the local magnetization at each site of the pure fe
magnetic Ising model on a two-connection DHL. They o
served the multifractal structure of the local thermal aver
magnetizationat the critical point@15#. This highly inhomo-
geneous structure having zero mean in the thermodyna
limit is induced by the topology of the underlying lattic
Moreover, they also showed that an infinite set ofb expo-
nents is required to describe for the critical behavior of
local magnetization@15#. This work was further generalize
for a p-connection DHL withq intermediate sites within
each connection @16#. The Morgado-Coutinho-Curad
~MCC! method was also applied to investigate the multifra
tal and critical properties of theq-state ferromagnetic Pott
model on thep-connection DHL@17#.

In the present paper we intend to contribute to the und
standing of the nature of the SG condensed phase. An
ceptable description of the structure of this phase is not
well established. Since disorder and frustration are the
evant ingredients for the SG physical behavior@1#, a rather
unusual structure should be expected for the local order
rameter characteristic of the low-temperature phase. M
vated by this, we generalized the MCC method to investig
the structure of the local Edwards-Anderson~EA! order pa-
rameter of the Ising SG model on generalized diamond h
archical lattices at temperatures below the critical point. T
distribution of the measure defined by the normalized lo
EA order parameter along the lattice will be analyzed us
themultifractal method. This method is appropriated to de
scribe self-similar local quantities that can be interpreted
measures. The multifractal analysis was mostly develope
describe a broad class of objects generated by physical
cesses and characterized by normalized stationary dist
tions ~measures! assigned upon fractals sets@18#. The volt-
age distribution associated with random resistor networ
thegrowth probabilityof aggregation processes, and theve-
locity differenceinside eddies in the case of fully develope
turbulence are examples of nontrivial distributions where d
ferent fractals subsets give the dominating contribution
different moments of the distribution@19#. Nowadays it is
being used also to study observables at the criticality, suc
the conductance in the localization-delocalization transiti
@20# and the local magnetization of pure spins models@15–
17#. The scaling properties of the EA measure will be co
sidered by calculating the correspondingF(a) spectrum as a
function of the temperature. Now we extend the prelimina
results obtained by Coutinhoet al. @21#, where theF(a)
spectra of the SG Ising model with an initial Gaussian d
tribution was studied for lattices up to 12 generations. W
consider four distinct initial distributions of couplings~bimo-
dal, Gaussian, uniform, and exponential!, with lattices up to
16 generations, investigating the temperature dependenc
e
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theF(a) spectrum aroundTc . In Sec. II the model Hamil-
tonian is presented and the corresponding critical temp
tures associated with each distribution are obtained. In S
III we give full details of the generalization of the MCC
method for the SG case, as well as about the numerical
cedure used to obtain the EA order parameter profiles for
four distinct initial distributions of couplings. In Sec. IV th
multifractal properties of the EA order parameter are o
tained and the correspondingF(a) functions calculated by
distinct initial distributions are compared. Furthermore,
investigate the temperature behavior of the boundaries of
F(a) functions, above and below the critical point, corr
sponding to each distribution. Finally, the conclusions
summarized in Sec. V.

II. HAMILTONIAN AND MIGDAL-KADANOFF
RENORMALIZATION-GROUP PROCEDURE

Let us consider the nearest-neighbor short-range Is
spin-glass model on a generalp-connection diamond hierar
chical lattice. The hierarchical lattices are connected grap
recursively constructed by replacing all bonds at each g
eration by a basic unit, the starting point being the basic u
itself ~first generation!. The DHL basic unit is designed b
two root sites coupled throughp connectionsin parallel,
each of them composed by two bondsin seriesvia one in-
ternal site~scaling factor 2!, as schematically shown in Fig
1. Thegraph fractal dimensionsof such lattices are given by
d511 lnp/ln2.

The Hamiltonian of the present model is given by

2bH5(
^ i , j &

KN~ i , j !s is j , ~1!

whereKN( i , j )52bJN( i , j ) is the reduced exchange cou
pling constant between nearest-neighbor spins of
N-generation DHL, JN( i , j ) being the Nth-step Migdal-
Kadanoff renormalized coupling constant obtained from
original distribution. It is worth mentioning that the rea
space Migdal-Kadanoff renormalization-group transform

FIG. 1. General diamond hierarchical lattice basic unit, withp
parallel paths, each one composed of two bonds and one inte
site ~scaling factor 2).
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3936 55E. NOGUEIRAet al.
tion ond-dimensional Bravais lattices is known to be equiv
lent to the exact solution on the DHL with ad-graph fractal
dimension @14#. The MKRG transformation of a
p-connection DHL with general nonuniform coupling co
stants yields an effective coupling given by@11#

KN
eff~m,m8!5

1

2(
l51

p

lnH cosh@K~s l ,m!1K~s l ,m8!#

cosh@K~s l ,m!2K~s l ,m8!# J ,
~2!

which can be rewritten in terms of more convenient variab
as

tm,m85tanhF(
l51

p

tanh21~ ts,mts,m8!G , ~3!

wheretx,y5tanhKx,y is called thermal transmissivity. In Eq
~2! s l labels the spin variables of thep internal sites of a
basic unit, whilem andm8 denote the root variables~see Fig.
1!.

The critical temperature for the spin-glass model can
numerically obtained from either Eqs.~2! or ~3! by monitor-
ing the width of the iterated distribution@11#. For the case of
Eq. ~3!, in the zeroth step a pool ofM random initial trans-
missivities ($t i%5tanh(b$Ji%); i51,2, . . . ,M ) is generated,
with the coupling constants$Ji% following a given probabil-
ity distribution. In the first step Eq.~3! is iteratedM times by
choosing at random 2p initial transmissivities; the new
M -valued pool represents the renormalized thermal trans
sivity distribution. This process may be repeated and ren
malized distributions can be numerically followed by com
puting its moments at each step@11#; a flow diagram may be
constructed, e.g., in the transmissivityversusvariance plane
@22#. Since the spin-glassfixed-point distributionis not ana-
lytically known, we considered four initial symmetric distr
butions of interest, namely, the Gaussian, bimodal, expon
tial, and uniform ones, defined, respectively, by

P~Ji , j !5
1

A2p
expS 2

1

2
Ji , j
2 D , ~4a!

P~Ji , j !5
1

2
@d~Ji , j21!1d~Ji , j11!#, ~4b!

P~Ji , j !5
1

A2
exp~2A2uJi , j u!, ~4c!

and

P~Ji , j !5H 1

2A3
if 2A3<Ji , j<A3

0 otherwise.

~4d!

A pseudocritical temperature is associated with each in
distribution, for which the flow will converge to the critica
point characterized by the ‘‘fixed-point’’ distribution, whic
is numerically known@24#. For temperatures very close t
but below ~above! this pseudocritical temperature the flo
will at first approach the fixed point and then turn to t
-

s

e

is-
r-

n-

l

spin-glass~paramagnetic! fixed point characterized by infi
nite ~zero! variance and zero mean. In Table I, we pres
our numerical estimates for these pseudocritical temperat
obtained from the initial distributions given by Eqs.~4! in the
cased53(p54), compared with other values reported
the literature.

III. LOCAL MAGNETIZATION
AND LOCAL EA ORDER PARAMETER

A. Generalized method for spin glasses

The aim of this method is to establish a recursion relat
between the value of the local magnetization of the inter
site belonging to a connection of a given basic unit of t
DHL with the local magnetization of its root sites. If this
achieved, one can consider a finite DHL withN generations
with Ising spin variables, described by the Hamiltonian giv
in Eq. ~1!, with nearest-neighbor random exchange coupl
constants chosen from a given initial distribution, and ren
malize it N21 times, storing at each step all renormaliz
coupling constants. Then, taking arbitrarily initial magne
zations ~corresponding to the spin-glass boundary con
tions! for the root sites of the first generation, we can su
cessively calculate the local magnetizations of each site
theN-generation DHL, at a given temperature and for a ch
sen initial coupling-constant distribution.

To obtain this recursion relation, let us consider
N-generation DHL and look at an arbitrary basic unit intr
duced at theNth generation as shown in Fig. 2. This bas
unit is connected to the lattice by its root sites (m,m8).
Therefore, the partition function of the whole lattice can
written as

Z5Tr~$s i %,m,m8!exp@2bH8#

5Tr~$s i %,m,m8!exp@2bH~$s i%,m,m8!#

3exp$2b~hmm1hm8m81K8mm8!%, ~5!

where$s i%, i51,2, . . . ,p, denote the internal spins within
each connection;m,m8 are the root spins of the basic uni
andhm ,hm8, andK8 are, respectively, the effective fields an
the effective coupling acting upon the basic unit root sp
induced by the rest of the lattice.H($s i%,m,m8) is the inter-
nal Hamiltonian of the basic unit given by

H~$s i%,m,m8!5(
i51

p

~Kim1Ki8m8!s i , ~6!

TABLE I. Spin-glass pseudocritical temperatures for differe
probability distributions within the Migdal-Kadanof
renormalization-group procedure, ind53 spin glass.

Reference Gaussian Bimodal Exponential Uniform

this work 0.88 1.15 0.75 0.96
@11# 0.8860.02 1.0560.02 1.0060.02
@22# 0.85 1.2 0.7 1.0
@12# 0.89
@23# 0.83 1.15 0.71 0.94
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55 3937SHORT-RANGE ISING SPIN GLASS: MULTIFRACTAL . . .
whereKi ,Kı́8 are the corresponding random coupling co
stants between thes i ’s and them, m8 spins, respectively.

The local magnetizations of all sites within a given ba
unit can be easily evaluated for the effective model defin
by the HamiltonianH8 by tracing over all spins variables
However, since our main concern is to establish a recurs
relation between the internal-site magnetization and thes
the roots sites of a certain basic unit, the procedure can
further simplified by focusing our attention on a single co
nection and including the effects of the other connectio
onto the effective fields and coupling, following the ideas
the decoration transformation formalism@25#. In this case,
our system is overreduced to a single connection with
internal site under the action of the effective fields and
fective coupling induced by the remaining lattice, as sc
matically shown in Fig. 2. For this overreduced system,
Hamiltonian in defined by

H9~s,m,m8!5~K1m1K2m8!s1hmm1hm8m81K8mm8.
~7!

The magnetizations at each site are straightforwardly ca
lated, giving

^m&5Z21Tr@m exp~2bH9!#

5
~tm1ttm8!1t1t2~tm81ttm!

11ttmtm81t1t2~ t1tmtm8!
, ~8!

^m8&5Z21Tr@m8exp~2bH9!#

5
~tm81ttm!1t1t2~tm1ttm8!

11ttmtm81t1t2~ t1tmtm8!
, ~9!

^s&5Z21Tr@s exp~2bH9!#

5
t1~tm1ttm8!1t2~tm81ttm!

11ttmtm81t1t2~ t1tmtm8!
, ~10!

FIG. 2. Schematic representation of the equivalent system
structed by retaining a given basic unit of the final generation, w
coupling constantsKi ( i51, . . . ,2p). m,m8 are the root spins of
the basic unit;hm ,hm8 andK8 are, respectively, the effective field
and the effective coupling generated by the whole lattice.
-

d

n
of
be
-
s
f

n
-
-
e

u-

where t5tanh(K8), ti5tanh(Ki) (i51,2), andta5tanh(ha)
for a5m,m8. Now, from Eqs.~8! and ~9! we can write the
unknown variables (t, tm , and tm8) as a function of
^m&, ^m8&, andZ and substitute them in Eq.~10! to end up
with the recursive equation

^s&5
t1~12t2

2!

12t1
2t2
2 ^m&1

t2~12t1
2!

12t1
2t2
2 ^m8&. ~11!

We emphasize that if the sites of a hierarchical lattice
properly addressed, Eq.~11! establishes a recursive equatio
between the local magnetization of the sites belonging to
last generation and the ones of previous generations. M
over, its coefficients depend not on the unknown fields a
couplings, but only upon the coupling constants belonging
the chosen connection. This result is the main achievem
of this method.

B. Numerical procedure

To analyze the structure of the local EA order parame
of our model, we should calculatês i&

2 for all sites and
average them over many samples, yielding

qi
EA5@^s i&

2#c , ~12!

where@ #c stands for the configurational average taken o
many independent initial distributions of couplings. To co
sider larger lattices we have to go further in the renormali
tion steps. Since the number of sites and bonds increases
(2p)N, the amount of computer memory required to store
magnetizations and the coupling constants during the in
mediate steps will increase with such a rate. In order to ma
mize the number of renormalization steps, we look at
magnetization structure of a subset of representative site
the lattice. These sites are the 2N ones belonging to any
shortest path connecting the roots sites. The magnetiza
~and/or the EA local order parameter! structure of this subse
can be viewed as a representativeprofileof the whole lattice.
Since they are stochastically equivalent, we argue that
averaging over many profiles, we should obtain the corr
scenario for the local EA order parameter of the conside
model.

To calculate the profile of the local magnetization of
N-generation hierarchical lattice we make use of Eq.~11!. To
display the profile, we have to label the sites of a given pa
assigning the values of its local magnetizations of the s
port set, due to the graph topological nature of the hierarc
cal lattices. To proceed, we choose the set of site labels
(s,l ) belonging to the interval @0,1#, defined by
s322 l , s51,3,5,. . . ,(2l21), and l labeling the genera-
tion (l51,2, . . . ,N). For this choice the recursive equatio
can be written as

^s&s,l5Ls1 ,l1
^m&s1 ,l11Lsj ,l j

^m8&sj ,l j , ~13!

where s15
1
2(s61), l 15 l21, sj5

1
2(s71), and l j5 l2 j ,

with j52,3, . . . ,l . The coefficients of Eq.~13! are given by

Ls1 ,l1
5
ts,s1~12ts,sj

2 !

12ts,s1
2 ts,sj

2 , ~14a!

n-
h
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3938 55E. NOGUEIRAet al.
Lsj ,l j
5
ts,sj~12ts,s1

2 !

12ts,s1
2 ts,sj

2 , ~14b!

where ts,sj5tanh@Kl(s,sj)#, Kl(s,sj) being the coupling con-

stant between the spins at the positionss22 l and the one at
sj2

2 l j .
To calculate an EA order parameter profile we must fi

generate the coupling constants for each level. Due to
disordered nature of the profile we make use of an equiva
stochastic procedure in order to save computer memor
intermediate steps of the calculation. For a fixed value of
temperature we create an initial distribution for the therm
transmissivities, represented by a pool ofM random numbers
(M>1032N). At the Nth level we choose randomly, from
the initial distribution, a set of 2N couplings, which are
stored to be used later in the calculation of the site magn
zations. At the next level@(N21)th level#, we obtain a
renormalized distribution~newM random numbers!, gener-
ated according to the renormalization Eq.~3!; from this dis-
tribution, we pick randomly 2N21couplings, which are also
stored. This process is carried forN21 times such that at the
last level only two couplings are stored. Now we make u
of Eq. ~13!, fixing the initial values for the magnetization o
the roots~zeroth generation!, and calculate the local magne
tization of each level, using for the coupling constants
values previously stored.

C. EA order parameter profiles

For each of the initial distributions defined in Eq.~4!, we
generated profiles at the corresponding critical tempera

FIG. 3. Portion of the profile of local EA order parameter f
one sample and a lattice withN516 generations; the sites chose
belong to a subset with positions in the ran
i53.03104, . . . ,4.03104, selected from the seti51,2, . . . ,2N,
corresponding to a given shortest path connecting the two r
sites.~a! T5Tc and ~b! T50.9Tc .
t
e
nt
at
e
l

ti-

e

e

re

Tc ~see Table I!, as well asT150.9Tc , T250.8Tc , and
T350.7Tc . This was done for lattices withd53 andN58
up to 16 hierarchies. In Fig. 3 we display these profiles
the Gaussian distribution at the temperaturesTc and
T1 (N516) for just one sample, whereas in Fig. 4 the sa
is done for 200 samples. It is clear from these figures that
disordered structure of the local EA order parameter of o
sample increases as we go further in the condensed ph
However, when the configurational average is taken, the p
file presents uniformities reminiscent of the graph latt
symmetry, similar to what happens for the pure model@15#.
Also evident from Fig. 4 is the increase ofqEA

522N( iqi
EA , the mean value per site, as we decrease

temperature. For all other distributions listed above~bimo-
dal, exponential, and uniform!, the same qualitative behavio
was observed@26#.

IV. MULTIFRACTAL PROPERTIES

The high degree of discontinuity shown in the profil
suggests the multifractal analysis as a tool to investigate
singularities of the measure constructed from the EA lo
order parameter, following the same approach used for p
models @15,17,18#. To obtain the multifractal spectra@the
F(a) function#, we first define a measure by the normaliz
local EA order parameter

z i
EA5

qi
EA

(
i
qi
EA

~15!

and construct a parametrized family of normalized measu
defined by

ts

FIG. 4. Portion of the profile of the average local EA ord
parameter (200 samples! for a lattice withN516 generations; the
sites chosen are the same as in Fig. 3.~a! T5Tc and ~b!
T50.9Tc .
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m i
EA5

~z i
EA!q

(
i

~z i
EA!q

, ~16!

which is a generalization of the original measurez i
EA , in-

creasing the large site probabilities for positive values ofq as
well as the small ones for negative values ofq. The F(a)
function is now obtained following the method due
Chhabra and Jensen@27#, where thespectrumis obtained by
varying the parameterq and calculating

F~aq!5 lim
N→`

H 21

Nln2(i m i
EAlnm i

EAJ , ~17!

aq5 lim
N→`

H 21

Nln2(i m i
EAlnz i

EAJ . ~18!

In Fig. 5 we display the correspondingF(a) functions for
the profiles of one sample obtained from the initial distrib
tions listed in Eq.~4!, for temperatures at and belowTc . We
notice light variations of the spectra by changing the te
perature for the Gaussian, bimodal, and uniform cas

FIG. 5. F(a) functions of the local EA order parameter profi
with one sample, for decreasing temperatures and different in
distributions of coupling constants:~a! Gaussian,~b! bimodal, ~c!
exponential, and ~d! uniform (s, T5Tc ; h, T150.9Tc ;
L, T250.8Tc ; andn, T350.7Tc).
-

-
s,

whereas more pronounced changes are observed for th
ponential case. In Fig. 6 the correspondingF(a) functions
averaged over 200 samples are shown for the Gaussian
bimodal distributions atTc andT150.9Tc . Minor changes
are observed when we compare with Fig. 5.

In Fig. 7 we show in the same plot theF(a) functions at
and belowTc for the four considered distributions. It i
worth directing the reader’s attention to the universal ch
acter of theF(a) function within small deviations. Here we
remark that, although we have used the renormalized di
butions of couplings at each step of the calculation, the
fluence of the initial distribution should be relevant since
the thermodynamic limit (N→`) half of the sites in the
profile belong to generationN and their magnetizations ar
calculated with the coupling constants introduced by the
tial distribution. For the whole lattice this influence shou
be even more relevant; in this case78 of the total number of
sites belong to generationN.

al

FIG. 6. F(a) functions of the average local EA order parame
profile ~200 samples!, at and below the critical temperature, for th
~a! Gaussian and~b! bimodal distributions of coupling constant
(s, T5Tc ; h, T150.9Tc).

FIG. 7. Comparison between theF(a) functions of the local EA
order parameter profiles at and below the critical temperature
the Gaussian,s; bimodal, h; exponential,L; and uniform,n
initial distributions of coupling constants.~a! T5Tc and ~b!
T150.9Tc .
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In order to investigate the behavior of theF(a) spectrum
aroundTc , we plot in Fig. 8 the dependence of its upper a
lower bounds as a function of the temperature, for all
considered initial distributions. We notice that belowTc a
constant value is observed for the upper bound (amax), while
small deviations occur for the lower bound (amin) close to
Tc . Nevertheless, for temperatures slightly aboveTc an
abrupt increase is observed for the upper bound, whil
small decrease occurs for the lower bound, signaling the
transition. At T>Tc the magnetization at the majority o
sites vanishes, being eliminated from the calculation of
spectrum. Therefore, as we are dealing with a finite latt
one should expect a finite but higheramax, which is the
exponent governing the singularities of the set of smal
measures still present. This is evidenced by the rapid
crease ofamaxwith the temperature, forT.Tc . On the other
hand, theamin exponent that governs the set of higher me
sures should remain finite to describe the singularities of
measures belonging to the sites ‘‘close’’ to the root si
~or surfacesites!. Those sites are the ones whose magn
zations were calculated with at least one of the values
posed as initial boundary conditions. The intermediate po
of the spectra should bespuriouspoints since the presen
algorithm @27# used to calculate theF(a) function is based
on the method of moments and tend to produce a top e
lope of the actual spectrum@28#. In the thermodynamic limit
(N→`), we expect to have no spectrum except a point~0,0!
corresponding to the nonvanishing values introduced by
imposed boundary conditions.

V. CONCLUSION

We generalized the exact recursion method developed
Morgadoet al. @15# and applied it to investigate the structu
of singularities of the local Edwards-Anderson order para
eter of the short-range Ising spin-glass model on diam
hierarchical lattices. Within this procedure, the distributi
of coupling constants is renormalized by the Migd

FIG. 8. Upper (s,amax) and lower (h,amin) bounds of the
F(a) spectrum as a function of the temperature for different dis
butions of coupling constants:~a! Gaussian,~b! bimodal,~c! expo-
nential, and~d! uniform.
e

a
G

e
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st
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-
e
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e-

e

by

-
d

Kadanoff renormalization equation, which is exact in su
classes of lattices. The EA order parameter profiles (2N sites!
for lattices up toN516 hierarchies were calculated by co
sidering four types of initial distributions~Gaussian, bimo-
dal, exponential, and uniform! and for temperatures aroun
the critical point. ForT<Tc the profiles of the spin-glas
condensed phase show a high degree of disorder and s
larities increasing for lower temperatures. The multifrac
analysis was applied to these profiles, revealing a large s
trum of exponents for the singularities of the measure
fined by the normalized local EA order parameter. For ea
considered distribution of couplings, theF(a)function of the
profiles show slight variations with the temperature in t
studied range 0.7Tc–Tc , with larger deviations occurring
when the temperature gets closer toTc . These profiles revea
a high degree of local disorder of the spin-glass conden
phase, a scenario not observed in the pure case@15,16# for
the same classes of lattices. Moreover, small deviations
observed when the multifractal spectrum obtained from d
tinct initial distributions of coupling constants are compar
at the same temperature. This suggests auniversalmultifrac-
tal behavior of the present model for distinct initial distrib
tions of couplings, taking into account that78 of the total
number of sites belong to the last generation, whose lo
magnetizations are calculated with the coupling constants
troduced by the not-yet-renormalized~initial! distribution.
We have also studied the temperature dependence of
range of the multifractal spectrum close to the critical poi
For T<Tc the range of thea Hölder exponent remains con
stant. However, when the temperature is higher thanTc , one
observes an abrupt change in the multifractal spectrum
naling the transition. Therefore, themultifractal analysis
shows that a complete characterization of the SG behavio
criticality and deep inside the condensed phase demand
knowledge of a broad~infinite! set of exponents. For the pur
case, this spectrum was found to be linearly related t
spectrum ofb critical exponents associated with the loc
magnetizations@15#. In such case, theb critical exponent of
the average magnetization of the whole lattice correspond
the subset of measures described bya5d, d being the di-
mension of the support. We expect that a similar relat
should be valid also for the spin-glass case, establishin
complete characterization of the critical exponents in ter
of the multifractal spectra. This point needs further inves
gation.

However, contrary to the pure case, where a nontriv
multifractal behavior is observed only at the critical tempe
ture @15,16#, the persistence of theF(a) function throughout
the spin-glass phase indicates the highly nontrivial chara
of such phase. Although we are not able to associate
persistence of multifractality with any prediction from th
available theories to describe short-range spin glasses
multifractal analysis evidences the contrast between t
spin-glass and ferromagnetic states and the critical natur
the spin-glass condensed phase.
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